Table WEB 1: DNOP General Toxicity, Rats | Species,
Strain, and
Source | Experimental Regimen | Animal
Number | Dose* | Body
Weight | Organ
Weight | Histopathology | Hematology | Chemistry | Other | |---|---|----------------------------|---|----------------|---------------------|--|--|---|-------| | Sprague-
Dawley
Rat Poon et al. 1997 (1) | Young male and female rats were fed diets containing DNOP for 13 weeks, then killed and necropsied. A positive control group was exposed to DEHP. | 10
10
10
10
10 | 0.40
3.5(M)/4.1(F)
36.8(M)/40.8(F)
350.1(M)/402.9(F) | NE
NE
NE | NE NE NE | NE NE NE Mild lesions in liver. Thyroid follicle reduction and decreased colloid density. No peroxisome proliferation or testicular lesions. | NE NE NE | NE ↑PO ₄ (F) NE ↑EROD ↑ Ca (M) | NOAEL | | | | 10 | 345(M)/411(F)
DEHP | NE | -Li, Ki (M),
-Te | Testicular atrophy,
liver and thyroid
lesions, and
peroxisomal
proliferation. | - WBC (F),
PC .
-Hb (F),
MCV (F). | -Alb, PO ₄ ,
Ca (M),
protein (F),
APD, AH | | *Doses measured in mg/kg bw/day. NA=Not Analyzed NE=No Effects ↑=Statistically Significant Increase ↓=Statistically Significant Decrease WBC=White Blood Cell Te=Testes M=Male F=Female EROD=Ethoxyresorufin-O-deethylase APD=Aminopyrine-N-Demethylase Activity Li=Liver AH=Aniline Hydroxylase Ki=Kidney Ca=Calcium Alb=Albumin PC=Platelet Count PO₄=Phosphate Hb=Hemoglobin MCV=Mean Corpuscular Volume WEB Table 2: DNOP Developmental Toxicity, Rats | Species,
Strain, and
Source | Experimental Regimen | Animal
Number | Dose* | Maternal effects | Fetal
Effects | |-----------------------------------|------------------------------------|------------------|-------|-------------------------|------------------------------------| | Sprague- | Prenatal developmental toxicity | 5 | 0 | | | | Dawley Rat | study | | | | | | | | 5 | 4,890 | Not mentioned in paper. | ↓ Fetal weight. | | Singh et al. | DNOP administered by | | | | ↑External malformations (16% | | 1972 | intraperitoneal injection on gd 5, | | | | fetuses with gross abnormalities). | | (2) | 10, and 15. Dams killed on gd 20, | | | | | | | corpora lutea counted and | 5 | 9,780 | | ↓ Fetal weight. | | | implantation sites examined | | | | ↑External malformations | | | Fetuses weighed, examined for | | | | (27% fetuses with gross | | | viability and gross external | | | | abnormalities). | | | malformations. 30–50% of | | | | , | | | fetuses examined for skeletal | | | | | | | malformations. | | | | | ^{*}Doses measured in mg/kg bw/day. ↓=Statistically Significant Decrease ^{↑=}Statistically Significant Increase Table WEB-3: DnOP Reproductive Toxicity, Mice | Species,
Strain, and
Source | Experimental Regimen | Number ^a | Dose ^b | Effects | |---|--|---------------------|-------------------|--| | CD-1 Mice | Dose range finding study. | | 0-10,000 | Rough hair coat in high-dose group | | Heindel et al.
1989; Gulati et
al. 1985 | Fertility assessment through continuous breeding for 14 weeks. | 36 | 0 | | | (3, 4) | | 20 | 1,800 | NE | | | DNOP administered in feed. | | | | | | Body weight measured at 6 | 18 | 3,600 | NE | | | time points, clinical signs, and food and water intake recorded. Litters counted, sexed, weighed, observed for abnormalities, and removed following birth. Final litter raised; some control and high-dose F ₁ weanlings mated for fertility assessment; F ₁ organ weights measured at necropsy. | 20 | 7,500 | No adverse effects on sperm morphology, estrous cycles, or other reproductive parameters in F_1 rats. No effect on fertility index, mating index, numbers of litters produced, live pups/litter, sex ratio, or pup weight. \downarrow Percent abnormal sperm in F_1 rats. \downarrow Seminal vesicle to body weight ratio in F_1 rats. \uparrow Liver and kidney (females) to body weight ratio in F_1 rats. | ^aNumber of male and female pairs; half the number of controls used for F₁ study NE=No Effect ^bAuthor-calculated doses (in mg/kg bw/day) based on male mice. ^{↑=}Statistically Significant Increase ↓=Statistically Significant Decrease ## References - 1. Poon R, Lecavalier P, Mueller R, Valli VE, Procter BG, Chu I. Subchronic oral toxicity of di-n-octyl phthalate and di (2-ethylhexyl) phthalate in the rat. Food Chem Toxicol 35:225-239(1997). - 2. Singh AR, Lawrence WH, Autian J. Teratogenicity of phthalate esters in rats. J Pharm Sci 61:51-55(1972). - 3. Heindel JJ, Gulati DK, Mounce RC, Russell SR, Lamb JCI. Reproductive toxicity of three phthalic acid esters in a continuous breeding protocol. Fundam Appl Toxicol 13:508-518(1989). - 4. Gulati DK, Chambers R, Shaver S, Sabehrwal PS, Lamb JC. Di-n-octyl phthalate reproductive and fertility assessment in CD-1 mice when administered in feed. Research Triangle Park: National Toxicology Program, 1985.